PGT應用於偵測罕見聽力喪失遺傳疾病(HHL)

PGT應用於偵測罕見聽力喪失遺傳疾病(HHL)

PGT採用方法有傳統PCR, FISH, array comparative genomic hybridization (aCGH), single-nucleotide polymorphism (SNP) arrays, next-generation sequencing (目前主流為NGS)
 

1.PCR容易汙染造成假陽性或陰性 同時偵測標的受限無法應付多基因造成之遺傳疾病

2.FISH缺點為偵測標的受限 無法偵測所有染色體基因變異

3.aCGH缺點為偵測prob受限 無法偵測所有染色體基因變異

4.SNP & NGS可偵測所有基因組genome   SNP 陣列依賴於探針的全基因組分佈。但範圍過於廣泛

5.NGS 可以檢測各種遺傳變異,從單核苷酸變異到更大的結構變異,提供全面的遺傳訊息

6.本篇採用low coverage NGS 兼具偵測足夠廣泛, 偵測效率&精確

7.由於罕見基因疾病病患人數稀少 目前針對罕見疾病之PGT nGS應用發表稀少

 

Clinical application of preimplantation genetic testing based on low-coverage next-generation sequencing with linkage analyses in hereditary hearing loss families

  • PGT can be offered for more than 1700 monogenic disorders. 
  • The embryo genotypes were diagnosed by low-coverage sequencing combined with SNP linkage analysis.
  • The 19 couples include variants of autosomal recessive hearing loss gene GJB2, SLC26A4, USH2A, CDH23, and autosomal dominant hearing loss gene MITF, WFS1, and GSDME. 
  • PGT based on low-coverage next-generation sequencing with linkage analyses can block the transmission of deafness-related mutations to offspring. 2–3 × depth of embryo sequencing data enabled a credible testing of 205 deafness-related mutations loci. 
  •  
Pathogenic genes 19 (100.00)
  GJB2 5(26.32)
  SLC26A4 7 (36.84)
  USH2A 2 (10.53)
  CDH23 1 (5.26)
  MITF 1 (5.26)
  WFS1 1 (5.26)
  GSDME 1 (5.26)
  GJB2 + SLC26A4 1 (5.26)

 

  • PCR  is highly susceptible to contamination, which can lead to false positives or false negatives. 
  • FISH cannot cover all human chromosomes and has a higher error rate. 
  • aCGH enables genome-wide detection, but its resolution and diagnostic capabilities are restricted by the fixed number of probes. 
  • SNP-array relies on the genome-wide distribution of probes. 
  • NGS can detect a wide range of genetic variations, from single nucleotide changes to larger structural variants, offering comprehensive genetic information. 

 

TOP