PGS已使用多種分子技術來確定染色體倍性

1.PGS已使用多種分子技術來確定染色體倍性,包括螢光原位雜交 (FISH)、比較基因組雜交 (CGH)、陣列比較基因組雜交 (aCGH)、數位聚合酶鍊式反應 (dPCR)、單核苷酸多態性 (SNP) 陣列、即時定量 PCR (qPCR) 和新一代基因序列 (NGS)。
2.研究組和對照組在 20 週後繼續懷孕的主要結局相似(60.7% [54/89] vs. 65.1% [56/86])。
3.年齡≤37歲的女性,無論適應症為何,使用PGT均不會提高臨床懷孕率或活產率。
4.使用整倍體胚胎進行單一囊胚植入SET的懷孕率與使用形態分級胚胎的雙囊胚移植(DET)的懷孕率相當。
5.嚴重少精子症患者試管嬰兒的性染色體非整倍體發生率較高,可選擇進行 PGT-A 
 
Several molecular techniques have been utilized during IVF cycles to determine ploidy including fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), array CGH (aCGH), digital polymerase chain reaction (dPCR), single-nucleotide polymorphism (SNP) array, real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). 
the use of PGT is not associated with improved rates of clinical pregnancy or live birth after fresh autologous blastocyst transfer among women aged ≤37 years, irrespective of the indication. 
 SET with a euploid embryo would result in an equivalent pregnancy rate compared with double-embryo transfer (DET) of morphologically graded embryos. 
The primary outcome of ongoing pregnancy beyond 20 weeks was similar between the study and control groups (60.7% [54/89] vs. 65.1% [56/86]). 
patients with severe oligozoospermia have a higher rate of sex chromosome aneuploidy and may choose to pursue PGT-A; more investigation is warranted for other parameters, such as morphology.
TOP